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1. Introduction

Let a- and ~I be polyhedra; that is, closed polyhedral

convex sets, bounded or not, in R’~ . Our interest is in computing

the saallest nonnegative scale a . of a- for which some trans late

sa- + t contains ~1 , or equivalently , of computing the largest

nonnegative scale s~,. of ~i for which some translate s$ + t is

contained in a-.
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For certain d.acri ptio~s of a- and ~~ we observe that this problem;

namely, the circ~~~crip tion program

a — infimum: s1 s,t
P1

subject to: ~~ C s X + t  s > O

or equivalently , the inscription pro gram

a2 — supremum: s
P2 

B ,t

subject to: e~i + t Ca- s > O

is a linear program .

That an n—sphere of maximum radius in a polyhedron can be

found by linear programeing has been in the folklore for over a

decade and has been used in a variety of applications . Perhap s our

observations will be of use as well.
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2. Preliminaries -

To avoid trivialities we assume throughout tha t a- and 31

contain at least one and two points , respectively.

a- and ~ 
can be described as the intersection of finitely

many hyperplanes

9-{xER~~:Bx<b}

in which case we say that a- and 31 hay, representation H

Alternatively, a- and 9 can be described as a weighting of points

and rays

a--(x E t : x - X A + U ~, e A - l , A 1 O , w~~. O}

31— tx

where a — (1, 1, ... 1) in which case we say a- and 2’ have

representation W

Given a representation one can systematically convert it to

the other; however, we shall suppose , and typically rightly so, that

the computational burden of this conversion is prohibitive.

Using the representation W we see that any polyhedron a-

can be expressed as K + C where K is a compact polyhedron and C

is the polyhedron of rays of a- . For any positive scale s we

3
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have sa- — sK + sC — eK + C, and, of course, for a zero scale s

we have sar — {O} . Thus the set sa- is continuous in s - for

positive s, and is continuous in nonnegative a if and only if C

contains only the origin.

Given a- the cone of rays C is unique and we write

C — cone a- . By tng a- we mean the smallest subspac e of Rn

that contains a translate of a-
The next 1e~~~s describe the sense in WhiCh P1 and P2 are

equivaleit.

Lemma 1 (Principal Equivalence) : If 
~~1’ t1) is feasible

or optimal for P1 and is positive, then 
~~2’ t2) — (l/s~ , —t 1/s1)

is feasible or optimal, respectively, for P2, and vice, versa.

Lemma 2 (Feasibility): P1 is feasible if and only if cone31

C conea- and tng~~ C tng a- . P2 is always feasible.

Lemma ~ (At tainment) : The following are equivalent .

i) 0 < a1 
c + — ii) P1 has an optimum

iii) 0 c a2 c + iv) P2 has an optimum .

4
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1 ’
Le~~~ 4 (Non—att*{npPnt) : The following are equivalent :

i) z1 0

ii) z2 - + —

iii) 9+tC cone a- for some t

The possible discontinuity of aX + t at s — 0

accounts for the incomplete equivalence between P1 and P2
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3. Results 
- 

-

In this section we formulate the circumscription and inscription

problema P1 and P2 for three cases of representation; namely ,

NH, WW, and NW, where, for example, NW refers to a- and ~~i having

representations H and W, respectively.

In. each case a more general problem is treated first. We

generalize P1 and P2 to

infimum: cO
0

subject to: 31C X (8) 0 e 8

and

suPrgmum: cO

subject to: 31(0) C a- 0 ~ e

where ~ is a polyhedron in Rk and ce - is a linear function of 0

in 8 that measures some feature of the polyhedro ns. We regain P1

and P2 from P3 and P4 by setting 0 — (s ,t), etc.

Case EH

Let X(0) be the set {x : A(e)x < a(9)) where (A,a) is

an affine function of 0 in 9 and let 9— {x : Bx ‘C b } . The

program P3 is seen to be, using an alternative theorem, the linear

program

6
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minimize: c0
0 ,A

P5 subject to: LB — A(0) Lb < a(O)

A > O  e E ø

Observing that s a - + t — { x :A x < s a + At} for s > O  and

specializing P5 to solve P1 we obtain the linear program

z — minimize: s1 s,t,A
P6 subjec t to: LB — A Lb ‘C as + At

A > O s > O

Case WW

Let 9(0) be the set (Y(Oha + V(O) ir : cii 1, ~i > 0, i ~~. 01

where (!,V) is an affine function of 0 in 9 and let a- be the

set (Vt + Uw : ci 1, A ~ 0 , w > 01 . The program P4 is the

linear program

I maximize: cO
( e,A,~7,1r

subject to: T(0) — IA + U~ ci — e

V(0) — U n  0e 9

A l O  ~~> O

Specializing P7 to solve P2 we obtain the linear program

7
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a — ~~‘T4iiize: 52 s,t ,A ,fl ,11

subj ect to : t o e + S Y XA + U0 n i — c
PS

s V — U U  s > 0

A l O  0 10  1 1> 0

where o denotes outer product. In solving P8 one first verifies

that V — 1111 with 11 > 0 has a solution, and then drop. the constraints

sV -UI 1  and 1 1 > 0 .

Case NW1

We treat the case NW twice as NW1 and NW2 where we approach

the circumscription/inscription problems through P3 and P4 , respective ly.

Let ~ (e) — (x : A(0) x ‘C a(0)} where (A,a) is an affine function of

O in 9 and let 9’ {Yii + Vv : e~ — 1, ii ~~0, ir > 01 . The program

P3 is the linear program

minimize: cO
0

P9 subjec t to: A(8)Y < a(8)oe

A ( 0 ) V < O  0 E 9

Specializing P9 to solve P1 we obtain the linear program

I -
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a — minimize: s1

PlO subject to: ÀY < saoe + A(toe)

A V < O  s > 0

In solving P10 one verifies AV ‘C 0 and then drops the constraints

AV ‘C 0

Case NW2
Let 9(0) be the set {Y(0)p + V(0)ir : e~i — 1, ~t > 0, -w ‘ 0)

where (Y,V) is an af f ine function of 0 in 9 and a- is the set

{x : ax -C a) . Then the program P4 is the linear program

maximize: cO
0

PU subject to: AY(0) < aoe

AV(e )<O 0e9

Specializing P11 to solve P2 we obtain the linear program

a — maximize: a2 
~~~~~

P12 subject to: A(sY + toe) 5~ 
a

sAy -C O s ) ’ O

In solving P12 one verifies AV < 0 and then drops the constraints

civ c 0 . Observe that P11 remains a linear program if a also is

an af fine function of 0 in 9

9
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4. Related Problems

The forgoing raises the question as to whether the following

problems can be solved as linear programs.

a) Case WH

b) Finding the largest 3’ in a- or smallest a- containing 31

where rotations as well as scales and translations are permitted.

c) Finding the largest n—sphere 31 in a- where a- has

representa tion 1-1

d) Findi ng the smallest n—sphere a- containing 31 where 3’

has representation H or W .

-: We suspect , but have no comprehensive proofs , that none of

these problems can be formulated as a linear program. Observe in a)

that for fixed ( X U ,B,b) Case WH can be formulated as a linear

program by converting to one of the other cases; in b) the set of

optimal 31 may not be a convex set; and in d) the n—sphere may

have an irrational radius given rational data .

10 
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